• 欢迎进入材料科学世界,一起探索材料奥秘
  • 收藏本站,获取最新材料前沿资讯

 分类:金属材料

1
西工大钛合金增材制造重要突破,实现全等轴晶成形

西工大钛合金增材制造重要突破,实现全等轴晶成形

金属增材制造技术也被称为3D打印技术,因其具有区别于传统成形方式的逐点逐层成形工艺特点,使得复杂零部件的直接制造成为可能,在航空航天等高端制造领域受到广泛关注。然而,由于其成形过程中极高的温度梯度,最终形成的宏观晶粒往往为柱状晶粒,其显微组织和力学性能呈现出强烈的各向异性,即平行...

1个月前 (05-21) 666℃

《Nature》:一种新机制!设计出2.3GPa超高强塑性纳米合金

《Nature》:一种新机制!设计出2.3GPa超高强塑性纳米合金

当金属材料内部的晶粒尺寸减小至纳米尺度,材料的强度将依Hall-Petch关系大幅度提高。但当纳米晶金属塑性变形时,位错变得极难在如此小的晶粒内部保留下来,导致材料丧失应变硬化能力,很容易发生塑性变形局域化而失稳。 近期,由吉林大学、西安交通大学、悉尼大学、南京理工大学等组成的研...

3个月前 (04-14) 1170℃

马普所最新《Nature》:高强铝合金的氢脆取得重要进展

马普所最新《Nature》:高强铝合金的氢脆取得重要进展

越来越严格的交通运输温室气体排放法规促使人们努力重新审视用于车辆的材料。飞机上经常使用的高强度铝合金有助于减轻汽车的重量,但容易受到环境恶化的影响。氢脆化通常被认为是罪魁祸首。然而,导致氢脆失效的确切机制尚不清楚:对合金内部的氢进行原子级分析仍然是一个挑战,这阻碍了采用合金设计策...

5个月前 (02-17) 1224℃

北航《Acta Materialia》:优异的强塑匹配!纳米结构奥氏体不锈钢

北航《Acta Materialia》:优异的强塑匹配!纳米结构奥氏体不锈钢

晶粒细化至超细晶(d<1μm)甚至纳米晶(d<100nm)尺度是在不改变合金成分的前提下,大幅提升金属材料强度的重要途径。特别是对于316 型奥氏体不锈钢这类广泛应用于汽车、建筑和核工业等领域,需要同时兼具结构强度和抗腐蚀性的材料,晶粒细化能在显著提高强度的同时,避免其他强化方法...

6个月前 (01-13) 1602℃

马普所材料顶刊:一种全新合金设计理念!实现兼具超强高韧、高热稳定性合金

马普所材料顶刊:一种全新合金设计理念!实现兼具超强高韧、高热稳定性合金

高性能结构材料的设计一直致力于追求卓越的力学强度、延展性和热稳定性,然而这些性能通常难以兼得。虽然晶体-非晶复合合金通常具备比非晶态合金更高的延展性,但是晶体-非晶界面容易促进异质形核,不利于晶体-非晶复合合金的热稳定性。 针对以上难点,来自德国马克斯普朗克钢铁研究所(马普所...

8个月前 (11-15) 2238℃

登顶《Science》正刊封面!2GPa超高强度塑性纳米孪晶钛

登顶《Science》正刊封面!2GPa超高强度塑性纳米孪晶钛

编辑推荐:在纯Ti中通过低温力学过程,构建多层次纳米孪晶结构,显著提高了其抗拉强度和延展性。纯钛达到了接近2GPa的极限拉伸强度和77K下接近100%的真实失效应变。多尺度孪晶结构的热稳定性可达873K,这高于极端环境中许多应用的临界温度。与力学性能相似、价格昂贵的高熵合金相比...

10个月前 (09-17) 3756℃

北科大《Nature》子刊:具有塑性的低成本轴向零膨胀双相合金!

北科大《Nature》子刊:具有塑性的低成本轴向零膨胀双相合金!

零热膨胀(ZTE)合金,具有独特的尺寸稳定性、高的热导率和电导率等特点。然而,它们在热和应力下的实际应用受到其固有脆性的限制,因为零热膨胀(ZTE)和塑性通常是单相材料所独有的。此外,ZTE合金的性能对成分的变化非常敏感,常规的合成方法,如合金化或多相设计,来提高其热性能和力学性...

10个月前 (08-28) 2937℃

马普所《Nature Materials》:妙!这样竟然可以提升高强钢的抗氢脆性

马普所《Nature Materials》:妙!这样竟然可以提升高强钢的抗氢脆性

金属材料的强度和抗氢脆之间的矛盾,是设计在含氢环境中工作的轻质可靠结构组件的内在障碍。因此,必须要找到经济可扩展的微观结构解决方案来应对这一挑战。 在此,来自德国马普所的Binhan Sun & Dierk Raabe等研究者,引入了一种违反直觉的策略:设计和利用材料微结...

12个月前 (07-09) 3078℃

​一作兼通讯发《Nature》:双功能纳米析出相!同时提高合金强塑性

​一作兼通讯发《Nature》:双功能纳米析出相!同时提高合金强塑性

通常,具有面心立方(fcc)结构的中、高熵合金,具有较高的拉伸延展性和优良的韧性,但室温强度较差。尽管可以通过晶界孪晶界、溶质原子和析出相等阻碍位错运动,提高其强度。但与此同时会降低延展性,且析出相也会阻碍相变。 在此,来自美国橡树岭国家实验室的Ying Yang & E...

1年前 (2021-07-08) 2469℃

中科院金属所《Script Mater》:观察到了U形层错结构!

中科院金属所《Script Mater》:观察到了U形层错结构!

编辑推荐:本研究在锆合金第二相中首次观察到的非典型的特殊U型层错,并对其形成机制进行的讨论。不同于现有文献报道的锆合金第二相内部直线型层次错或者交叉层错,首次观察到了更加复杂的U型层错,并根据相关观察结果提出了一个几何模型对这种缺陷的形成机制进行了讨论。相关研究结果对于...

1年前 (2021-06-24) 3207℃

《Acta Materialia》新方法!临界退火钢的组织演变与相变动力学

《Acta Materialia》新方法!临界退火钢的组织演变与相变动力学

双相(DP)钢因其出色的强度/延展性和轻量化潜质而广泛用于汽车行业,DP钢具有复合微观组织,该组织通常为马氏体组织(第二相)以岛状弥散分布在铁素体基体上,偶尔包含贝氏体。拉伸性能在很大程度上取决于马氏体的体积分数。它的三维特征,即相的空间和形态分布具有一定断裂特性。例如,沿轧制方...

1年前 (2021-06-10) 2220℃

香港城大吕坚院士团队《AFM》:高熵金属玻璃电化学析氢!

香港城大吕坚院士团队《AFM》:高熵金属玻璃电化学析氢!

随着工业市场经济的高速发展,化石燃料的过度开采及使用所造成的全球生态环境危机已经成为人类命运共同体需要面临的首要挑战。今年,习近平主席在第75届联合国大会提出了我国在2030年前实现“碳达峰”、2060年前实现“碳中和”的总体战略目标。氢能,作为最具可持续性和可再生的绿色能源,将...

1年前 (2021-06-04) 2862℃

陈乃录-吕坚团队重要突破!破解百年难题,实现最高性价比高强钢

陈乃录-吕坚团队重要突破!破解百年难题,实现最高性价比高强钢

随着新能源车的快速发展,汽车减重、提高安全性及降低成本都是发展制胜的关键,制造廉价高强塑性钢材就成为重中之重。目前全球汽车行业每年对先进高强钢的需求达到了数千万吨,低成本、高强塑性一直是汽车用钢的发展趋势。然而钢的强度和塑性通常倒置,即强度的提高将导致塑性的下降。过去的研究通常通...

1年前 (2021-04-24) 2643℃

西安交大取得重要发现!金属氢脆断裂新机制

西安交大取得重要发现!金属氢脆断裂新机制

编辑推荐:通过环境透射电子显微镜内的原位弯曲实验并结合原子尺度模拟计算,西安交大材料学院单智伟研究团队发现并提出在金属铝中由于局部塑性变形引发小角晶界的动态形成从而促进材料氢脆断裂的新机制。 金属的氢脆问题在各种工业应用中普遍存在,并经常导致关键金属构件在无征兆情况下发生突然断裂...

1年前 (2021-04-02) 2913℃

金属所-香港理工:新型超高强韧耐蚀不锈钢

金属所-香港理工:新型超高强韧耐蚀不锈钢

如何获得高强度和耐蚀性能兼备的高性能不锈钢,是我国面临的35项“卡脖子”技术难题之一。传统的马氏体时效钢虽然具有较高的强度,但存在成本高、耐蚀性差等缺点,这一直制约着这类材料的发展。因此,如何在维持优异力学性能的前提下,降低材料成本、提高耐腐蚀性能是新一代马氏体时效钢的研究重点和...

1年前 (2021-03-10) 3168℃

今日重磅《Science》:出乎意料的方法!让金属变得又强又轻

今日重磅《Science》:出乎意料的方法!让金属变得又强又轻

编辑推荐:去合金可在金属中产生空隙,从而减轻材料的重量。 然而,当固体分数低于约30%时,机械性能迅速降低。 本文发现的两阶段去合金步骤可以制造固体分数低至12%的Ag-Au合金。 出乎意料的是,该过程不会降低机械性能,同时允许合成大块样品。 该策略应适用于其他合金系统,为制备高...

1年前 (2021-03-05) 3554℃

顶级《Nature》子刊:液态金属凝固过程,出现神奇的表面图案!

顶级《Nature》子刊:液态金属凝固过程,出现神奇的表面图案!

编辑推荐:本文发现合金表面凝固是非常重要的一种模式,表面相变是由表面催化的非均相成核所驱动的。表面凝固效应的表面性质允许原位观察和表征,这为通过高分辨率表面表征进行基础相变研究提供了新的视角。表面凝固模式,有望在未来的光学、电子、凝聚态材料科学、催化等领域有广泛的先进应用。 &n...

1年前 (2021-02-03) 2236℃

今日重磅《Science》:晶体形核过程取得重要发现!

今日重磅《Science》:晶体形核过程取得重要发现!

编辑推荐:本文发现的晶体形核过程是通过无序态和结晶态之间的可逆结构波动进行的。通过高速原位观测证实了原子结晶形核过程的非经典和动态性质,阐明了材料生长形核阶段的基本机制。 尽管经典形核理论日臻成熟,但原子结晶中的成核,仍然缺乏了解。形核过程被认为包含一个非经典机制,包括从无序到...

1年前 (2021-01-29) 3195℃

《Nature Commun》:发现一种新的位错环扩散机制!

《Nature Commun》:发现一种新的位错环扩散机制!

位错环在材料中的迁移率,是理解材料机械强度以及形变和辐射引起的微观结构演化的主要因素。在体心立方(BCC)铁中,普遍认为<100>的间隙位错环一旦形成是不运动的。 近日,来自山东大学、中科院、吉林大学、北航、湖南大学、美国密歇根大学等单位的研究者,利用自适应加速分子动...

1年前 (2021-01-16) 2781℃

材友互识 供需市场 人才招聘